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ABSTRACT 

The conjecture is the following: Over an algebraic variety over a finite 

field, the geometric monodromy group of every smooth Y~((t))-sheaf is 
finite. We indicate how to prove this for rank 2, using results of Drinfeld. 

We also show that  the conjecture implies tha t  certain deformation rings 
of Galois representations are complete intersection rings. 

1. Introduction 

Let X be a curve over a finite field k of characteristic p. In [2], Deligne formulates 

a conjecture on lisse Q~-sheaves ~ over X, where g ~ p. A part of this conjecture 

can be stated as follows. If ~ is irreducible and has trivial determinant then the 

eigenvalues of the Frobenii on the stalks of s should be algebraic numbers (Weil 

numbers). 

In this article we formulate a similar conjecture for lisse Ft ((t))-sheaves over X. 

In this case the algebraicity of the eigenvalues of Frobenii implies the finiteness 

of the image of the monodromy representation, see Proposition 2.8. Thus the 

conjecture can be stated simply as follows. 
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1.1 CONJECTURE (see 2.3): For any lisse Ft((t))-sheafE over X the geometric 

monodromy group is finite. 

In [3], Drinfeld proved part of Deligne's conjectures for lisse (~-sheaves of rank 

2. He proved more, namely he attached an unramified cusp form (eigenform) to 

any such E. In Section 4 we indicate how these arguments give a similar result 

for our conjecture. 

1.2 THEOREM (see 4.10): The conjecture above holds for lisse sheaves of rank 

2. 

In Section 4 we spell out the link between Conjecture 1.1 and the Langlands 

program: A strong result towards the Langlands correspondence mod l for n _> 3 

implies the conjecture for sheaves of rank n. The results which have been obtained 

in the literature on the Langlands correspondence (Drinfeld, Deligne, Laumon 

and others) are much stronger, but of a slightly different flavor from what we 

are trying to do here. For example, we find (Theorem 2.17) that one needs only 

to prove our conjecture over p r o j e c t i v e  curves, hence we need to study only 

unramified cusp forms. 

The author thinks the conjecture is interesting because it implies a result on 

deformation rings of Galois representations. In [9] it was shown that certain defor- 

mation rings are complete intersections. In this paper we show that  deformation 

rings of representations of lrl(X) are often complete intersections, see Theorem 

3.5. The proof of this theorem gives a geometric explanation of this phenomenon. 

We briefly formulate a special case of the result. Let P0: 71"l(X) -'+ SLn(Ft) be 

a residual representation. We assume that P o l . ~ )  is absolutely irreducible and 

that l does not divide n. Let Puniv: 71"l(X) --4 SLn(Runiv) be the universal defor- 

mation of Po. 

1.3 THEOREM (see 3.5): (i) I f  the conjecture above holds, then Runiv is a 

complete intersection finite and fiat over Zt. 

(ii) I f  n = 2, then Runiv is a complete intersection finite and fiat over Zt. 

As a corollary we obtain (for n = 2) that any such P0 can be lifted to a rep- 

resentation p: lrl(X) ~ SL2(~.I), see Remark 3.6. Undoubtedly, the motivation 

behind Deligne's conjectures is that one hopes to find a family of motives corre- 

sponding to any irreducible lisse (~-sheaf. Therefore, the above seems to indicate 

that we can guess the existence of a family of motives over X, by observing a 

single sufficiently irreducible residual representation. 
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2. T h e  c o n j e c t u r e  

2.1 Notation: In this section we will use the following notations: 

p is a prime number, 

2.2. 

group ~rl (X, 5:) of X over local fields of characteristic t. 

point Speck -+ X, there is a complex of pro-finite groups 

1 > lrl(X,:~ ) ) lrl(X,~) ---~ Gal(k/k) 

k is a finite field of characteristic p, 

fr is an algebraic closure of k, 

X is a variety over k, i.e., an integral scheme, separated and of finite type over 

Spec k, 

is the fibre product X x Sp~c k Spec k, 

/ is a prime number different from p, and 

F is a local field of characteristic l. Thus for some finite field F of 

characteristic t we have F ~- F((t)). 

We want to understand representations of the arithmetic fundamental 

Recall that, if �9 is a 

It is exact if X is geometrically connected over Speck. We often omit the base 

point ~ from the notation, e.g. ~rl(X) = ~rl(X,~) and r l (X )  = r l (X ,~) .  The 

conjecture will tell us something about the action of Gal(k/k) ~ Z on Irl(X). 

Let V be a finite dimensional F-vector space. We are going to consider 

continuous representations 

p: r l ( X )  ) GL(V). 

The topologies involved are the pro-finite topology on r l ( X )  and the topology 

induced from the topology on the local field F on GL(V) C End(V). 

2.3 CONJECTURE: Let X, p be as above, and assume that X is a normal scheme. 

Then p(Irl (X) ) is finite. 

In words: any representation defined on the a r i t h m e t i c  fundamental group of 

X is finite when restricted to the g e o m e t r i c  fundamental group. Let us remark 

on the assumptions of the conjecture. 



64 A.J. DE JONG Isr. J. Math. 

If X is an elliptic curve over k, for example, then ;rl(X) surjects onto Zt for 

any g. Hence there exist representations p: zrl(X) --} GLI(F)  with infinite image. 

Just compose the surjection lrl(X) ~ Zt with the map Xt ---} Ft((t))*, mapping 1 

to 1 + t E F, ((t))*. Thus the conjecture does not hold for representations defined 

on ~ l (X) .  

Since rrl(X) surjects onto Zt, there are many representations with p(Trl(X)) 

infinite. This explains why we look at the image of the geometric fundamental 

group. 

If we do not assume that X is normal then the conjecture does not hold either. 

For example, suppose that X is the curve that one obtains from P~ by identifying 

0 with oc. In this case ~rl(X) ~ Z and the exact sequence of 2.2 is split. Again 

it is easy to make a counterexample to the conjecture in this case. 

If we allow ~ -- p then the conjecture is false also. For example, take X = A~. 

It is well known that Hom(rrl(X),Fp) is (countably) infinite. We can use this to 

construct a continuous surjective homomorphism r l  (X) -+ (Fp [[t]], +). However, 

there is a continuous injective homomorphism of groups 

(Fp[[t]],+) - -~ GL2(F,((t))) ,  x ~ 1 ' 

The composition gives the desired counter example. 

If we do not assume that the local field F has finite characteristic, then the 

conjecture is not true either. If the characteristic is (0, ~), then one can take as a 

counter example the monodromy representation on the Tate module of a family 

of elliptic curves with nonconstant j-invariant. In fact, in this case, the image of 

7rl(X) is an open subgroup of SL2(Qt). [In the case (0,p) this works also. If one 

considers a family of ordinary elliptic curves with nonconstant j-invariant then 

the image of 7rl(X) is open in GLI(Qp).] 

2.4 PROPOSITION: The conjecture holds if  dim V = 1. 

Proof: In this case, p can be viewed as a continuous homomorphism 1rl (X) 

F*. We have F* ~ (pro-t) x F* • Z. By [2, Theorem 1.3.1] we have that 

zrl(X) ab ~- (pro-p) x (finite) x Z. Furthermore, the geometric fundamental group 

of X maps onto the first two factors of the decomposition. Thus the proposition 

follows. | 

2.5. In the rest of this section we are going to discuss a few properties of this 

conjecture. We will show that it suffices to consider the cases where P t ~ )  is 
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irreducible, and that  it suffices to consider the cases where X is a projective 

curve. 

Let us first discuss a special case where the conjecture is equivalent to the 

finiteness of p(r l (X)) .  In the following, a continuous representation p: F -+ 

GL(V) of a topological group over F is called (absolutely) irreducible if and 

only if the representation p is (absolutely) irreducible as a representation of the 

abstract group F. 

2.6. Some of our results will be general results on extensions of profinite groups 

1 >F ~G ) Z ---~ 1. 

2.7 LEMMA: In the abstract setting 2.6, suppose that p: G -+ GL(V) is a con- 

tinuous representation of G such that 

(i) det p = 1, i.e., p(G) c SL(V), and 
(ii) Pit is absolutely irreducible. 

Then we have 
# p ( r )  < ~ ~ # p ( a )  < co. 

Proof: The implication ~ is trivial. Hence, let us assume that  H = p(F) C 

SL(V) is finite. Pick g E p(G), a topological generator of the pro-cyclic group 

p(G)/H. Note that  gHg -1 = H; thus conjugation by g induces an automorphism 

of H.  Since H is finite, this automorphism has finite order. We deduce that there 

exists an e E N such that  h = gehg-e for all h E H. Thus ge commutes with H,  

hence by (ii) and Schur's lemma we get ge = M y  for some ~ E F.  By (i) we get 

~dim Y = l. Therefore g has finite order and so does p(G). I 

Thus we would like to have a criterion that tells us when p(~h(X)) is finite. 

This turns out to be equivalent to the algebraicity of the eigenvalues of Frobenii 

in the representation p. Let us write IX I for the set of closed points of X. For any 

x E ]X I, we let F ,  E 7rl (X) denote a geometric Frobenius element corresponding 

to x. We remind the reader that Fz is well defined up to conjugacy. 

2.8 PROPOSITION: Suppose we have X and p as in the conjecture. Then the 

following two assertions are equivalent: 

(i) #p(~h(X))  < oc, and 

(ii) for every x E IX[ the characteristic polynomial of p(Fx) has coemcients in 

the finite subfield F o fF .  

Proof: We remark that if F TM F((t)) then F C F is the set of elements of F 

that  are algebraic over the prime field of F.  Thus the implication (i) =~ (ii) is 

trivial, as the eigenvalues of an element of finite order are algebraic. 
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Assume (ii). Consider the functions fi on lrl(X) given by the formulae 3' ~-~ 

Trace(p('),), A i v) ,  for i = 1 , . . . ,  dim(V). These function are continuous and they 

take values in F on Fz for x E IX[. By the Chebotarev density theorem, the Fz 

are dense in 7q(X). Thus we see that fi has values in F on lh(X) entirely. By 

continuity and the fact the F is finite, we deduce that each fi is locally constant. 

Thus there is an open subgroup H C Irl (X) such that these functions are constant 

on H, with value Trace(1y,A s v).  We conclude that p(h) is unipotent for all 

h E H .  

We apply [1, Theorem on page 87, Chapter I, Section 4], and we deduce that 

there exists a basis of V such that p(H) lies in the upper unipotent subgroup 

Un(F) of GLn(F).  (Here n --- dimV.) Since F has characteristic g, the group 

Un(F) has exponent gn. Thus the map H ~ U,~(F) factors through the maximal 

pro-g quotient H e of H. 

Note that H ~ lrl (Y) for some finite 6tale morphism Y ~ X. Thus by Lemma 

2.9 below we know that H t = Try(Y) is topologically finitely generated. Hence, 

by Lemma 2.10 below we see that p(H) = p(H t) is finite. Therefore, pOh(X ) )  

is finite. | 

2.9 LEMMA: Let Y be a connected scheme of finite type over k or k. Then the 

maxima/pro-g quotient Try(Y) of 7r l (Y)  is topologically finitely generated. 

Proof'. By [7, Section 4.2], we have to show that the cohomology group 

HI(Ir~(Y), Z / /Z)  = Hom(r~(Y), Z/gZ)  

is finite. This group is equal to the 6tale cohomology group HI(Y,  Z/gZ) which 

is finite, see e.g. [13, finitude]. | 

2.10 LEMMA: Let F C Un(F) be a closed subgroup. / f F  is topologically finitely 

generated, then F is finite. 

Proo~ Set Fi+I = [F, Fi] (take topological closure) and F0 = F. From the 

structure of U,~(F) we get that Fn = {1} and that Fi+l/Pi  is annihilated by 

gn. Thus F is a nilpotent pro-/group, and F, is topologically finitely generated. 

Clearly this implies that F is finite. | 

2.11 PROPOSITION: Fix • E N. 

dim V _< n, and X is a curve. 

dim V _< n. 

Suppose Conjecture 2.3 holds in all cases where 

Then the conjecture holds in all cases where 



Vol. 121, 2001 ARITHMETIC FUNDAMENTAL GROUPS 67 

Proof: We assume that the hypothesis of the proposition hold. Pick X, V 

with dim V <_ n and p as in the conjecture. We may assume by induction that  

Conjecture 2.3 has been proven in all cases (Y,V~,p'), with d imV'  <_ n and 

dim Y < dim X. 

Since X is normal, the map Gal(k(X)sep/k(X))  --+ 7rt(X) is surjective. Hence 

for any dominant morphism X'  -+ X of varieties over k (for example, an open 

immersion) the image of ~rl(X') --+ 7h(X) is open. Therefore, we may assume 

that X is smooth affine. Furthermore, after replacing X by a finite ~tale covering 

(which replaces Image(p) by an open subgroup), we may assume that Image(p) 

is a pro-g group. 

By [12, Expos~ XI, Section 3], we may assume that X is an elementary fibra- 

tion: There is a diagram 

such that  j is an open immersion, f is a smooth projective morphism of 

relative dimension 1 and such that X ' \  X is finite 6tale over Y. In addition, 

after replacing Y by a nonempty scheme ~tale over it, we may even assume 

that the morphism X -+ Y has a section s: Y ~ X. In this situation, by 

[11, Expos~ XII, Proposition 4.3 and Exemples 4.4], there is an exact sequence 

of pro-g fundamental groups 

1 > 7r~(Xo,~: ) > 7r~(X,~e) - -~ lr~(Y, fl) > 1. 

Here 0 is the geometric point of Y induced from the geometric point ~ of X. We 

may assume that  0 lies over a closed point y of Y. Thus the restriction of p to 

lrl(X~, ~) is finite by our assumption applied to the restriction of p to 7rl(Xy, ~). 

By induction hypothesis, the composition 7r1(~') s'>~rl(X)-C+GL(V) has finite 

image. The reader easily deduces from these two statements that the conjecture 

holds for p. | 

2.12 LEMMA: Let G be the absolute Galois group of a complete discretely valued 

field K of characteristic p. Assume the residue field k of K is of finite type over 

its prime field. Let I C g be the inertia subgroup. Let p: g -+ GL(V) be a 

continuous representation of ~ over F. Then p(I) is finite. 

Proof: This is Grothedieck's argument, compare [8, Appendix]. Let P C I 

denote the wild inertia subgroup. Since the topology on GL(V) is g-adic and 

the group P is a (compact) pro-p group, the image p(P) of P is finite. We also 

know that  I / P  is pro-cyclic; thus we can pick an element c E p(I) such that c 
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topologically generates p(I) /p(P) .  We leave it to the reader as an exercise in 

group theory that  a suitable power c 'n centralizes the finite group p(P) for some 

m E N .  

Pick an element F E ~ which maps, under the composition G -+ G/I  ~- 

Gal(kSep/k) ~ Gal(~'p/Fp) to a power of Frobenius. This is possible by our 

assumption on k. Then we have 

p(F)cmp(F) -1 = c m f ,  

for some a E N. This follows as I / P  ~- 1-]rr as a F / I -module .  The 

displayed equation implies that  all eigenvalues of c m are roots of unity. Thus c n 

is unipotent for some n E N. Since F has finite characteristic this implies that  

c '~ has finite order. Thus p(I) has finite order. I 

2.13 PROPOSITION: I[ Conjecture 2.3 holds in all cases where X is a projective 

curve and dim V <_ n, then the conjecture holds in all cases where dim V _< n. 

Proof'. Pick X,  V with d i m V  < n and p as in the conjecture. By Proposition 

2.11 we may assume that  X is a curve. Let X C X '  be a projective completion. 

Write X '  \ X = {Xl , . . . ,  x~}. Let O~ be the complete local ring of X'  at x~, and 

let K~ be its fraction field. There is a natural morphism Spec K~ --+ X, hence by 

composition, p induces Galois representations p~: GalK, -+ GL(V). By Lemma 

2.12 we know that  the image of the inertia subgroup I~ c GalK, under p~ is finite. 

We choose an isomorphism F = F((t)). Let A C V be a F[[t]]-lattice in V, 

stable under p. We can choose a large integer N E N such that the finite groups 

p(Ii) act faithfully on A/tNA.  Let Y -~ X be the finite ~tale Galois covering 

which corresponds to the homomorphism 

~1 (X)--~GL(A)----+GL(A/tNA). 

Let Y C y t  be the projective completion of Y, which is a ramified Galois cover 

of X ' .  By our choice of Y, the inertia groups at the points of Y~ not in Y, act 

trivially on I s. Thus p, when restricted to 7rl(Y), extends to a representation p' 

of r l  (Y').  It is clear that  if the conjecture holds for p', then it holds for p. This 

proves the theorem. I 

2.14. Lie-irreducibility. Let F be a pro-finite group and let p: F --+ GL(V) be a 

continuous representation of F over F. We say that p is L i e - i r r e d u c i b l e  if for any 

open subgroup U C F the representation Plu is irreducible. Similarly, there is the 

concept of a b s o l u t e l y  L ie - i r r educ ib l e :  for all U c F open, PIu: U ~ GL(V) 

is absolutely irreducible over F. 
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There is a criterion for (absolute) Lie-irreducibility in terms of the Zariski 

closure Gp C GL(V) of the image of p. Let G O denote the connected component 

of the algebraic group Gp. Then p is (absolutely) Lie-irreducible if and only if 

the representation of G O on V is (absolutely) irreducible. We leave the proof of 

this fact to the reader. 

2.15 LEMMA: Assume we have F C G as in 2.6 . Let p: G -+ GL(V) be a 

representation. Then there exist a finite extension F C F',  an open subgroup 

H C G and an H-stable filtration 

(0) c Wi c W2 c . . .  c W,~ = V @F F' 

by F' vector spaces such that Wi+i /Wi  is absolutely Lie-irreducible as a 

representation of H n F over F'. 

Proof: Suppose the representation is an extension 0 -~ V' --4 V ~ V"  --40. 

If the lemma holds for V' and V" ,  then the lemma holds for V. (Indeed, take 

H = H' n H" and as extension of F some finite extension containing both F' 

and F".)  Furthermore, we may replace F by any finite extension of F during 

the course of our proof. Finally, we may replace G by any open subgroup H of 

G and F by H N  F. 

Thus we may assume that  V is absolutely Lie-irreducible as a representation of 

G. Let Gp be the Zariski closure of p(G) as in 2.14. Thus we have that  G o acts 

absolutely irreducible on V. Let us choose H C G open so that p(H) c G~ 

It is a general fact that if an algebraic group K acts absolutely irreducibly on a 

vector space, then so does its dcrived group K def. Since p(H) is Zariski dense 

in G ~ we see that p([U, I t  D is Zariski dense in (G~ def. But [H, H] c H n F. 

We conclude that the Zariski closure of p(H n F) contains o der (Gp) , which acts 

absolutely irreducibly. Therefore we are done by the discussion in 2.14. I 

2.16 LEMMA: Suppose in Conjecture 2.3 the representation V is an extension 

0 -+ V' --~ V -+ V"  --} 0 of representations. I f  the conjecture holds for V'  and 

V ' ,  then the conjecture holds for V.  

Proof: Let H C ri(X')  be the open subgroup which acts trivially on V' and V".  

Then p maps H to the unipotent subgroup 1v + Hom(V', V") of GL(V). Since 
i 

H ~ ~vi (Y) for some finite ~tale morphism Y -+ X, we see that the image of H 

is finite by Lemma 2.10. I 
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2.17 THEOREM: Suppose that Conjecture 2.3 holds in every case (X ,V ,p ) ,  

where X is a smooth projective curve, dimV <_ n, and P[~I~) is absolutely 

Lie-irreducible, and det(p) = 1. Then the conjecture holds in ali cases where 

dim V <_ n. 

Proof: By Proposition 2.13, we may assume that X is a projective curve. We 

may still replace F by a finite extension, and X by a finite dtale covering. Thus, 

by Lemma 2.15, we may assume that V has a filtration by subrepresentations 

0 C V1 C . . .  c Vm = V such that the representation of ~h(X) on V~/V~_I 

is absolutely Lie-irreducible. If the conjecture holds for these quotients, then 

the conjecture for p follows by Lemma 2.16. Thus we may assume that  p is 

absolutely Lie-irreducible. By Proposition 2.4 we see that det(p)l~l(~) has finite 

image. Thus, after replacing X by a finite dtale covering, det(p) will factor 

as ~rl(X) ~ Gal(kSep/k) -~ F*. We leave it to the reader to see that in this 

situation we can find (after extending F)  a character e: rl(X.) ~ F* such that  

det(p @ e) = 1. If we prove the conjecture for the absolutely Lie-irreducible 

representation p @ e, then the conjecture for p follows. This proves the theorem. 
| 

3. Deformat ion  rings and t h e  c o n j e c t u r e  

3.1 Notation: In this section we use the following notation in addition to the 

notation fixed in Subsection 2.1. 

F is a profinite group, 

F is a finite field of characteristic ~, and 

W(F) is the Witt  ring of F. 

O is a finite extension of W(F), which is a complete discrete valuation ring 

with uniformizer 1to such that O / n o  ~ F. 

Co is the category of complete Noetherian local O-algebras R with R / m R  ~- F. 

3.2. Suppose that  we are given a continuous 'residual' representation P0: F 

GLn(F) and a continuous character e: F -+ O* = GLI(O) such that c mod 7to = 

det(po). In this case the deformation functor 

Def(F, P0, e) 

is the functor Co ~ Set which maps R to the set of equivalence classes of 

continuous representations 

Pa: F ~ GL,~(R) 
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such that  PR mod mR = P0 and det(pR) = (O* --+ R*) o e. Here equivalence is 

defined as follows: PR "~ P' if and only if there exists an element g E GL. (R)  R 

such that  P'R = inng o PR, i.e., for all 7 E F we have P'R(~) = g- lPR(7)g.  

3.3. We want to use the Schlessinger-Mazur theorem [6, Section 1.2] to insure 

that the functor Def(F, Po, e) is representable on the category Co. For this we 

need to make two kinds of assumptions: one of these assures the rigidity of the 

problem, and the other is a natural finiteness condition: 

(a) Any T C MR(F) commuting with Image(po) is a scalar matrix. This is true, 

for example, if Po is absolutely irreducible (Schur's lemma). 

(b.1) F is topologically finitely generated. 

(b.2) HI(F ', F) is finite for every open subgroup F' of F. 

If we have (a) and either of the conditions (b.1) or (b.2), then there exists a 

universal pair (Runiv, Puniv): For every (R, PR) there is a unique r Runiv --+ R 

such that PR "" r o Puniv. 

3.4 DEFORMATION RINGS OF GALOIS REPRESENTATIONS. Let k be a finite field 

of characteristic p, with p -~ g. Let X be a curve over Spec k, by which we mean 

a smooth geometrically connected scheme of dimension 1. We take F = r l  (X) 

to be the arithmetic fundamental group, and we assume given 

P0: Irl(X) --+ GLn(~'), and e: 7rl(X) ) O* 

as before. We remark that we can view P0 and any deformation PR as a Galois 

representation of k ( X )  unramified at all places dominating X. Thus the structure 

of the universal deformation ring of Po is related to the structure of this Galois 

group, and vice versa. 

3.5 THEOREM: In the situation above, assume 

(i) Conjecture 2.3 holds for X and n, 

(ii) the restriction Po[~,~) is absolutely irreducible, and 

(iii) g does not divide n. 

Note that (i), (ii) and (iii) imply that the existence result of 3.3 can be applied 

to Def(~rl(X), Po, e), hence we get a universal deformation ring Runiv. Then 

0 ) Runiv 

is a finite fiat complete intersection morphism. 

3.6 Remarks: (a) In the work by Wiles and Taylor [10, 9] the complete inter- 

section statement occurs as a theorem in some cases where F = Gal(Q~/Q),  and 
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E is a finite set of primes, e is the cyclotomic character, n = 2 and only deforma- 

tions that  are crystalline or ordinary at g are allowed. Part of the motivation for 

the Conjecture 2.3 comes from the fact that it 'explains' the complete intersection 

behaviour in the function field case. 

(b) In particular the conjecture implies: Any P0 satisfying (ii) and (iii) can be 

lifted (in at least one way and at most finitely many ways) to a representation 

p: 7rl(X) --+ G L n ( ~ ) .  This is really quite a strong assertion! 

(c) Since we prove the conjecture in case n = 2, we see that the deformation 

rings of 2 dimensional representations p are complete intersection rings. 

3.7. The rest of this section is devoted to the proof of the theorem. We will 

use the exact sequence 

1 --+ 7h (X') > 7h(X) ----4 Gal(k/k) --+ 1 

to study the relation between the deformation rings of Po and of Po[~,~T). 

To be more precise, let us write (R, p) for the universal deformation associated 

to the deformation functor Def(~h(X), Po, ~). Further, let us write (/~, t~) for the 

universal pair associated to the deformation functor Def(Trl(X), P01~(~), e[~l(~)). 

We remark that the assumptions (a) and (b.2) of 3.3 are satisfied for both defor- 

mation problems. 

3.8. The pair (R, PI.,(~)) is a deformation of P0].~(~) with determinant e l , ~  ). 

Hence by the unversal property of deformation rings we get a unique map of 

O-algebras 

and an element g E GL,,(R) such that r = g- lP(7)g  for all 7 E r l (X) .  

We may replace p by inng o p, which is still universal. Then the formula above 

simplifies to 
r = p(-f). 

3.9. Choose an element F E 7rl(X) which gets mapped to the l~robenius element 

of Gal(/c/k). Choose an element hi E GLn(R) such that hi mod m~ = po(F). 
We define the representation 

fiF: ,/i.1 (X) ~ GL,~(/~) 
, > h l p ( F - l " / F ) h [  1. 

With these definitions we have pF rood mR = P01~,pF), and det(p F) = e]~pT). We 

conclude that (/~, pr) is a deformation of P o l ~ }  with determinant el~,pF). By 
the universal propcrty of deformation rings we get an O-algebra homomorphism 
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and an element h2 E GL~(/t) such that (I)(/5(7)) = h21pF('f)h2 for all 3, E r l (X ) .  

3.10 LEMMA: (i) (I) is an automorphism of[{ over O. (ii) We have (I) o r = r 

Proof: By considering the twist /9 F-~ similar to /~F above, one constructs the 

inverse to (I). The second statement follows from universality, and the fact that 

the F-twist of p is equivalent to p (use g = p(F)). | 

3.11 LEMMA: / ~  O[[Xl,...,Xs]] for some s E N. 

Proof: It is well known that a deformation ring is a formal power series if the 

obstructions vanish, see [6, Section 1.6]. In this case the obstruction space in 

question is 

H2(Th(X), s~(F)).  

T he a c t i on  of 7rl(X) on s[,,(F) is given by P0 combined with the adjoint action 

of GLn on s[,,. Since X is a K(lrl ,  1) for ~tale cohomology, we see that 

H 2 ( r ,  (X), sLn(F)) = H2t(X, .T') 

where .T" is the locally constant ~tale sheaf associated to s[,~ (F) with ad o (P01,1 ~))- 

action. If X is affine then the cohomological dimenion of X is 1, so this group is 

zero. I f X  is projective, then we can use Poincard duality. The sheaf ~" is self-dual 

as the Killing form is a nondegenerate invariant self-duality on sin(F). Here we 

use that ~ does not divide n. The Poincard dual of H2t(X, ~') is H~ ~), which 

we want to show is zero. This is equivalent to having no nonzero ad~  - 

invariants in ~I,,(F). This follows from condition (ii) of the proposition. | 

3.12 Definition: We let I~, be the ideal of [{ generated by expressions of the 

form r - (I)(r), where r e ft. 

We remark that I~, is generated by the elements xi - (I)(xi). 

3.13 LEMMA: The map r [{ -+ R identifies R with [{/Ir 

R O[[x  . . . .  - - 

Proof: We first, prove that the map r is surjective. For this it suffices to show 

that 

+ too[{) , + . , oR)  
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is surjective. These are F-vector spaces, whose duals correspond to the tangent 

spaces associated to the deformation problems. Thus we have to show that the 

map 

HI(rl(X),s[~(F)) ---+ g l ( r l (X) , s [~ (F ) )  

is injective. By looking at the six-term exact sequence of cohomology associated 

to the exact sequence of 3.7, we see that it suffices to prove that 

HI(Gal( fc /k) ,H~ ) = (0). 

This is true as H ~  s[~(F)) is zero by assumption (ii). 

Next, we construct a representation of r l ( X )  over the ring R/Ir  To do this, 

recall that 

(*) (I)(~(7)) = h2-1pF(7)h2 = h~lhlp(F-17F)hl lh2 .  

Note that modulo m~ we have 

P0(7) = P("/) = (I)(fi(~,)) = h21hl~(F-l~/F)hllh2 = h~lpo(~/)h2, 

by our choice of hi. Thus h2 mod mR commutes with Image(pol,r~)) and hence 

h2 is scalar modulo mR, say h2 = diag()~,)~,. . . ,~)rood mR for some )~ E /~. 

Then we get that det (h~lhl )  ~ Andet(po(F)) ~ A"e(F). By Hensel's lemma 

applied to the equation T n = det(h21hl)e(F) -1, we find an element tt E/~* such 

that #n = det(h~lhl)e(F)- l .  Here we use (iii), namely g /~n. At this point we 

define 

Pc: ~rl(X) > GL,( /~ / I r  

by the formula 
~F  '~ ~ p(-y)(#h~-lhl) n. 

We leave it to the reader to see that this makes sense for n E Z and that this is 

a homomorphism by equation (.).  By our choice of #, we have det(p~,) = e. 

Hence this is a deformation of P0 over R/I~ of determinant e. Thus the 

universal property of (R, p) gives us a unique homomorphism Ct: R --+ [~/I~. 
It is easy to see that the composition 

is the canonical reduction map. This, and the fact that r is surjective, proves 

the desired result. | 
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3.14. We come to the end of the proof of the proposition. We have obtained 

the isomorphism 

R O [ [ x l , . . . ,  x , ] ] / ( z l  - x ,  - 

A ring R of this shape will be a complete intersection finite and flat over O if 

(and only if) R/~roR is zero dimensional. Indeed, by [5, (16.B)], the equality 

d i m O [ [ x l , . . . ,  x~]] / ( f l , . . . ,  fs, 7r) = 0 implies that r ,  f l , . . . ,  f8 is a regular se- 

quence. Thus ] 1 , . . . ,  f-8 is a regular sequence in O/~rO[[xl, . . . ,  xs]]. This implies 

by [5, (20.F)] that  CO[[x l , . . . ,xs ] ] / ( f l , . . . ,  f s ) i s  fiat over CO. Finiteness follows 

from Nakayama's lemma, as R is Ir-adically complete. 

Let us assume to the contrary that dim R/1roR > 0. Then there exists a 1 

dimensional quotient R / f o R  ~ A. We may assume that  A is a domain. The 

normalization A t of A is a complete discrete valuation ring of characteristic ~ with 

finite residue field. Hence A' ~- F' [[t]]. The composition of p with the map R ~ A t 

produces a deformation of P0 | II~ to a representation p~ over A t. By assumption 

(iii) of the proposition, we may apply our conjecture to the representation p', 

and we obtain that p'(Trl(X)) is finite. By the group theoretical lemma below we 

conclude that  P I~I ~) = P0 I~, ~ ) |  ~ [It]]. Using the last lemma of this section, we 

deduce that  the map R ~ A t is the map R ~ F ~ A t. However this contradicts 

the construction of A as a quotient of R = R / I r  After checking the proofs of 

the next two lemmas, the reader will have completed the proof of Theorem 3.5. 

3.15 LEMMA: Let G be a finite group and let k be any field. Let p: G --+ 

GLn(k[[t]]) be a representation. I f  po := p mod (t) is absolutely irreducible, then 

P ~ Po | k[[t]]. 

Proof: We make some remarks on finite dimensional k-algebras A, to be applied 

to A = k[G]. For any field extension k C K,  the algebra A/~ = A | K has 

only finite number of maximal two-sided ideals m. (By the Chinese remainder 

theorem, for example.) Each A K / m  is a matrix algebra over a skew field Din, 

which is a finite extension of K. The intersection m0 = A A m is a maximal 

two-sided ideal of A, and Dm is a quotient of Dmo | K. If Dmo ~ k, then 

m = m o |  

Let M = k[[t]] n be the representation space of p, let M0 = M / t M .  By 

Burnside's theorem Po induces a surjection k[G] -~ End(M0) = Mn(k). By 

Nakayama's lemma we see that p induces a surjection k[[t]l[G ] --+ End(M) = 

Mn(k[[t]]). Hence the kernel m of k((t))[G] --+ Mn(k((t))) is a maximal two- 

sided ideal in k((t))[G] = Ak((t)), with D m =  k((t)). 
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We apply the discussion above to our m. Then we see that Dmo | k((t)) maps 

onto k((t)), in other words k((t)) splits Dmo. However, Br(k)  --+ Sr (k ( ( t ) ) )  is 

injective. Hence Dmo -~ k and k[G]/mo ~- Mr(k) for some r. Then m = mo| 

and r = n. It follows that the kernel of k[G] ~ End(Mo) is too. We conclude 

that  End(M) and End(M0) |  k[[t]] are isomorphic as k[[t]][G]-algebras. From 

this one easily derives the lemma. | 

3.16 LEMMA: Let O, F, po, e be as in Subsection 3.3, and let (Runiv,Puniv) be 

the universal deformation. Let A be a local complete Noetherian F-algebra such 

that ~ = A/mA is a finite extension ofF.  If  r Runiv -~ A is an O-algebra 

homomorphism such that r o Puniv ~- Po | A, then r is the map Runiv -+ Y --+ A. 

Proof: By the universal property of the pair (Runiv, Puniv) this is true if AlmA ~- 

F. Let (9 C 01 = O| be the finite ~tale extension with residue field ~ .  

To prove the assertion, we simply show that Runiv | (-91 is the universal ring for 

the deformation functor Def(F, Po |  e| �9 This is well known. See [6, Section 

1.3 (d)] for the existence of the map comparing the two rings. It is surjective. 

But the equations defining these rings are the same as they lie in a cohomology 

group which is compatible with base change: H2(F,~I) | F' = H2(F, sl | ~ ) .  
| 

4.  U n r a m i f l e d  c u s p  f o r m s  o v e r  f u n c t i o n  f i e lds  

In this section we recall the definition of an unramified cusp form. After this 

we recall the result of Drinfeld, see [3]. We apply these results to prove the 

Conjecture 2.3 in the case of representations of dimension 2. 

4.1. In this subsection we introduce some notations. 

k finite field of characteristic p, 

X projective, smooth, geometrically connected curve over k, 

K the function field of X: K = k(X) ,  

v denotes a place of K,  

K~ the completion of K at v, 

O~ the ring of integers of Kr,  

o = 1-I  c A - -  1-I'  Ko, 
A is any ring in which p is invertible. 

4.2 Definition: An unramified cusp form on GL2(A) with coefficients in A is a 

function 

f :  GL2(A) ~ A 
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such that  

(i) f(x~/) = f(x) for all x e GL2(A)and all ~/E GL2(K), 

(ii) /(ux) = f(x) for all x E GL2(A) and all u e GL2(O), 

(iii) the following integral equations hold for all x E GL2(A): 

1 z 

We briefly explain (iii). For every x E GL2(A) the left coset GL2(O)x is open 

in GL2(A). Hence by (ii) we see that f is a locally constant function on the 

topological group GL~.(A). Thus the function on A, appearing in the integrand 

of (iii), is locally constant. Furthermore, (i) implies that this function is invariant 

under z ~ z + t for all t E K.  Thus in (iii) we are integrating a locally constant 

function on the compact topological group A mod K. In fact, A mod K is a 

pro-p topological group. Let dz be the normalized I-Iaar measure on it. Then 

fv  dz E pZ for every open subset U C A mod K. Since A is a Z[1/p]-algebra, the 

integrals in (iii) make sense. 

4.3. Hecke operators. For v a place of X and f a cusp form, we set 

Furthermore, 

(Tvf)(x) := fgeM. f(g-lx)dg" 

Note that  Tvf and Uvf are also cusp forms. We used the following notations: 
~r v is a uniformizer of O.,  

My = {h 6 Mat(2 x 2, Ov)[ det(h) 6 7rvO~}, and 

dg is the Haar measure on GL2(K.) normalized by the condition: fca~(o~) dg 

~ 1 .  

Again it might be useful to explain the meaning of the integral in the definition of 

Tv. We will not do this, instead we give the result which will convince any reader 

that  T, is well defined. Let A1,. . . ,  Aqo E O~ be a system of representatives for 

Or/my = ~(v). Then 

-;~ilr~ I 7r~ I �9 
i=I 

4.4 Definition: An eigenform f is a cusp form f such that some value of f is a 

unit, and for all v there are tv,u, E A with Tvf = Avf and U~f = u, f .  
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4.5. In this case the elements uv E A are units, and the elements tv ~ A 

are well defined. The c e n t r a l  c h a r a c t e r  associated to an eigenform f is the 

homomorphism 

Xf: O' \A* /K* ) A" 

given by Xf ( (1 , . . . ,  1, Try, 1 , . . . ,  1)) = u~ 1. This is well defined by the invariance 

properties of f .  

4.6. In [3], Drinfeld proves one direction of the correspondence between rep- 

resentations p of 7rl(X), and eigenforms j'. Using normalizations as in [3], p 

corresponds to f if and only if tv = tracep(F~), and u.  = qv-1 dctp(F~). Since 

we want to study here only the case of representations p with trivial determinant, 

we are led to consider only those f such that u~ = q~-l 

We make an ad hoc definition: 

C(A) = {cusp forms f with coefficients in A such that U , f  = q ~ l f  for all v}. 

This is a A-module. For each v we have a A-linear operator Tv: C(A) ~ C(A). 

4.7 PROPOSITION: ff  A is Noetherian, then C(A) is a finitely generated A- 

module. I f  A is a field, and F C A is its prime subfield, then the natural map 

C(F) ---+ C(A) 

induces an isomorphism C(IF) | A ~ C(A) commuting with the Hecke operators 

Tv. 

4.8 COROLLARY: If f is an eigenform over a field A with central character qdeg(-), 
then all the eigenvalues t ,  E A are algebraic: there exists a subfield E C A, with 

[E : ~ < oc such that t ,  E E for ally.  

Proof." Both the corollary and the proposition are well-known. We sketch the 

proof of the proposition; we use some of the terminology and notations of [3]. Wc 

may think of any element f E C(A) as a function on Bun2, the set of isomorphism 

classes of rank 2 locally free sheaves of Ox-modules. 

Note that  f is completely determined by its values on s E Bun2, with deg(E) E 

{0, 1}. Indeed, by our definition of C(A) we have f ( s  | Af) = qdeg:gf(s for 

every invertible Ox-module Af. Furthermore, deg(E | = d e g ( s  2 deg(Af). 

Since X has a linebundle of degree 1, the result follows. 

Let us call an element /: E Bun2 ve ry  u n s t ab l e  if there exists an exact 

sequence 

O - - + A  ~ s ---~ B ~0, 
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with A, B E Pie(X) and deg(A) - deg(B) > 2gx - 2. In this case we have 

E x t ~ ( B , A )  = H I ( X , A |  -1) = H~ -1 | 1 7 4  = 0, 

by our degree assumption. Therefore E = A @ B, and s corresponds to the 

element (0 0) x = b E GL2(A) 

with Ox(div(a) )  ~- A and Ox(div(b)) ~- 13. In this situation all the elements 

(lz) 
x' = x  0 1 

correspond to extensions of 13 by ,4 as well. These therefore all correspond to 

the isomorphism class of E in Bun2. Thus condition (iii) of the definition of cusp 

forms therefore implies that  f ( s  -- 0 for every very unstable element Z: E Bun2. 

There are only finitely many elements E C Bun2 which are not very unstable 

and with deg(Z:) E {0, 1}. We indicate briefly how to prove this. First, one uses 

Riemann-Roch on X to show that any such E has a maximal invertible subsheaf 

A c /: of degree not less than - g x .  But as /~ is also not very unstable, we 

have deg(A) < gx.  This also gives that - g x  < deg(B) _< gx,  with 13 = f~/,4. 

Thus the number of isomorphism classes of A and 13 is finite. In addition the 

Ext-groups are finite as we are working over the finite field k. 

We conclude from the above that any element f of C(A) is determined by its 

values in finitely many points. Thus we get an injection of A-modules C(A) --4 A rc 

for some N E N. This proves the first assertion. The second easily follows from 

this, and the fact that  C(A) is given by certain universal linear equations in Arc 
with coefficients in the prime field of A. I 

4.9 THEOREM (Compare Drinfeld [3, Main Theorem]): Let F be a local field of 

characteristic ~ ~ p. Let p: 7rl(X) --~ GL2(F) be a continuous two dimensional 

representation with trivial determinant. Assume that PI, ,~) is absolutely irre- 

ducible. Then there exists an eigenform f C C(A) such that tv = trace p(fv) for 

all places v. 

4.10 COROLLARY: The Conjecture 2.3 holds for two dimensional representations. 

4.11. In the rest of this section we will indicate how to modify (slightly) the 

arguments of Drinfeld, in order to prove the theorem. However, we first indicate 

how the corollary can be derived from it. 
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For this we use Theorem 2.17. We deduce from it that it suffices to prove 

the conjecture for every triple (X, F, p), as in Theorem 4.9. By Proposition 2.8 

it suffices to show that the characteristic polynomials of the Frobenii Fv are 

algebraic for every v. This follows from Theorem 4.9 and Corollary 4.8. 

4.12. Additions to [3, Section 1]. Some of this has been discussed above. As 

coefficient ring we are going to use A = F[[t]]. As above we set uv = q,~-i 

and tv = trace p( Fv ). We skip the arguments involving Fourier transform, and 

directly define the function f :  Flag2 --+ A by the formula (6) of [3]. Note that 

the elements c,(n) and r(D) of A are well defined. 

We leave it to the reader to establish that f so defined is not zero, has the 

correct eigenvalues for Tv and Uv, and that the cusp property holds. [To see 

that  ] # 0, remark that i f / :  is the nontrivial extension of Ox by f~r then 

f ( f ~  c / : )  = _q29-2. The principle of algebraic identities can be used to verify 

the other properties: first define a 'universal' funiv over the ring Z[1/p, tv], where 

Drinfeld's arguments apply, and then specialize to our particular f.] 

We also leave it to the reader to check that [3, Proposition 1.1] holds with 

coefficient ring A = Flit]]. 

4.13. Additions to [3, Section 2]. We may assume that our representation p 

actually has image in SL~(F[[t]]). The representations p mod t r then correspond 

to finite locally constant sheaves of F[t]/(tr)-modules E~ over Xet. As in Drin- 
feld, we let ~: = {Er}reN- Thus we can define •('*) as in Drinfeld by the sys- 

tem ~'(") = (qo. ~n s etc. Note that the stalks of the sheaves ~:~('~) are flat 

F[t]/(tr)-modules. In our situation, one takes traces exactly as in the 'usual' 

case where A = Zt: first one takes the trace on each finite level, giving ele- 

ments in ~t]/(t r), and then one takes the inverse limit. For example the identity 

r(D) = trace(FD[~? (m)) of [3, proof of 2.1] remains true in our situation. 

In the proof of [3, Proposition 2.1] we encounter our first difficulty. Here 

Drinfeld uses fourier transform on the finite group Pic~ to prove the identity (7). 

However, this identity also follows from Deligne's Theorem, which is formulated in 

4.17 below. Indeed, we have to show that ~'~DeT r(D) = 0, when D runs through 

a complete linear series T of degree m > 2(2g - 2). Now, T is the set of rational 

points of the fibre over some u �9 Pic'~X of the morphism jacm: SymmX -~ 

PicmX. Since RJ(jacm).E (m) is killed by a fixed power of t for all j and r 

(see 4.17), we see that trace (F~[R(jac,~).s (rn)) is killed by a fixed power of t 

(independent of r). We deduce (7) by the Frobenius trace formula and proper 

base change. 
The rest of Section 2 of [3] goes through completely unchanged. However, even 
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though this is perhaps not strictly necessary, we would like to explain why the 

sequence (8) of [3] remains exact in our setting. 

4.14. The sequence for each r reads 

We construct fi as follows. Consider the map a: X m -+ Symm-lX • X (see 

diagram below). We have r o a = ~o. Note that  8 On-l) [] 8r = (a. []m 8r)S,,_~, 

and E ('n) = (~. []m 8r)Sm. By adjunction we have 

Hom(~/,.s 8(.~-1) [] Er) = Hom(E (m), r  ($(,n-t) [] 8~)) 

= Hom((~. []m s (qo. []~ 8)sm-') .  

In the last group there is a natural map, which gives/~. 

We construct ~ as follows. In addition to the maps above, let b: X m-1 --+ X 'n 

be the map ( x t , . . . ,  x,~-l)  ~ ( x l , . . . ,  xrn-1, xm-1) .  Then the diagram 

x m _  1 b ) x m  x m  

Symm-2x  x X a> S y m m - t x  x X r SymmX 

is commutative, where d is the obvious map. Consider the sequence of maps 

= s,)s  -, 

= A s4). 

Here 3 / is deduced from the natural map 8r [] Cr ~ A. A s 8r, with A: X --+ X x X 

as usual. It is easy to see that  the composition above maps C("~-t)[]ffr into 

s 4 
Exactness of  the sequence. This can be checked on the stalks. Given the 

description of the stalks of E (m) = s in [12, t. III, exposd XVII, (5.5.8.1)], 

we need only to prove: for M = A 2, the sequence of A-modules 

0 > r~(M) ~ r n - l ( M )  | M ? r"-2(M) | A2M ) 0 

is exact (with maps as above). This is easy to verify by hand, but it also follows 

from the second exact sequence of [4, t I, 4.3.1.7], taking E = 0, F = M and 

G = M .  

4.15. Additions to [3, Section 3]. No changes need to be made. Indeed, the 

vanishing cycle theorem I is a geometric statement and is proved in Section 3 of 

[3] for any finite coefficient ring of order prime to p. 
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4.16. Addi t ions  to [3, Section 4]. No changes need to be made. The switch to any 

finite coefficient ring of order prime to p is made on page 105 of the article. The 

arguments before this switch do not depend on the particular coefficient rings. 

4.17. Deligne's Theorem, see [3, page 113]. Let us formulate this only for our 

specific local system s The formulation we will use in our case is the following: 

Assume that  m > 2(2g - 2); then there exists a constant C > 0 such that  all 

the sheaves RJ(jacm),s (m) are annihilated by t c .  The  constant C m a y  depend 

on p and m but does not depend on j or r. 

Let us make a few additional remarks that explain how we see this in our 

case. The arguments of [3] do provide a proof if one is sufficiently confident with 

inverse limits. We advise the reader to read that proof before continuing. 

First, we remark that the lemma on page 113 of [3] is still correct in our setting, 

i.e., the sheaves RJ(jaCm).s  (m) are locally constant on P_ic'~X. 

Second, we are going to use symmetric Kfinneth formula [12, t. III, Expos~ 

XVII, Section 5.5]: 

nr(SymmX, E(~ ")) = LI 'Z t (nr (X ,  Er)). 

4.18. Third, we will use the following algebra lemma. For every ro, r l , r2  >_ 0 

and m > r l  - ro - r2, there exists a universal constant c = c(ro, r t ,  r2, m) with 

the following property: For every ring R and x E R and for every complex of 

finite free R-modules 

0 _ _ + K  o ~>K 1 ~>K2__+0,  

with rank(K i) = ri such that there exist s: K 2 ~ K 1 and r :  K 1 ~ K ~ with 

r o d o = xgo and d 1 o s = Xg~ we have: x c annihilates all homology groups of 

L F ~ t ( K ~  This lemma can easily be proved by reducing to the 'universal' case, 

where 

R -- Z[x, aij ,  ~ij, sij, ~rij]/(relations). 

This is a Noetherian ring, hence we need only show that L F ~ t ( K  ~ |  = O. 

But L r e ~ t ( g  ~ | R [ 1 / x  = L r ~ t ( g ~  @ R[1/x]) = LAIn(M), where M is the 

cohomology of K ~ |  in degree 1. See [4, t I, Proposition 4.3.2.1]. However, 

LAIn(M) = Am(M) as M is finite projective (by the existence of s and ~r). 

Finally, A'~(M) = 0, as M has rank rl  - r0 - r2 < m. 

4.19. Let F C 7rl(X) be the closure of the commutator subgroup of 7rl(X). 

Since p[~, r over F is absolutely irreducible, we see that the representation Pit 
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has no invariants, nor coinvariants over F.  Thus some power t N of t annihilates 

the module of coinvariants (F[[t]]~)r. We fix a choice of N. 

Suppose we are given a finite ring A, a ring homomorphism r F[[t]] -+ h and 

a continuous character w: ul(X) -~ A*. Then we can consider the finite locally 

free sheaf of A-modules s over X, obtained by twisting E = {Er} by w. The 

corresponding representation of lrl(X) is (r o p) | ~. 

Note that  H2t(X,s equals ( A 2 ) ~ )  (action via (r o p) | w) which is a 

quotient of (A~)r = (F[[t]]Z)r| Thus by the above, it is clear that  H~t(X, s 
is annihilated by the image of t N in h. Similarly for H2t(Y,, s Recall that 

RF(X, s is a perfect complex of A-modules of amplitude [0, 2], whose A-dual 

is RF(X,s Also its Euler characateristic in K0(A) is [A2(2g-2)]. From 

these results it follows that RF(X,s can be representated by a complex of 

free modules of ranks ro -- 2, rl = 4g and r2 - 2, satisfying the conditions of 4.18 

with x = t N. We deduce that  the cohomology groups of RF(SymmX,s (m)) 
are annihilated by t ely, with c as in 4.18. 

4.20. Using the above, we can duplicate the arguments of [3, pp. 113-114]. 

Pick C > >  cN, where c and N are as above, and assume by induction that  C 

works for j '  < j .  Let M be the F[t]/(t~)[rl(Pic'~X)]-module that corresponds 

to RJ(jacm),s ('~). The action of rl(PicmX) = ~rl(X) ~b factors through a finite 

quotient A. For any element m E M, the element 

aEA 

is A-invariant (diagonal action). Let us set A = F[t]/(tr)[A] and let w: ~I(X) -~ 
A* be the obvious character. If t M does not annihilated m, then t M does not 

annihilate the global section sm of 

(RJ0acm),E (m)) 
Here A(w) is the rank 1 locally free sheaf of A-modules corresponding to the 
character w. By induction on j ,  the sheaves RJ'(jacm),s m) are annihilated by 

t c for jr < j .  Thus by the Leray spectral sequence there exists an element 

s r E HJ(SymmX, E(w) ('~)) which maps to t ics in F(Pic'~X,R~(jac,~),E(w)(m)). 

By the above, we see that s ~ is annihilated by tcg, and hence sm and m are 

annihilated by t jc+cN. This ends the proof of Deligne's Theorem. 
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